
Visualization '91
San Diego, CA

October 22-25, 1991

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-JC-107230

A Scientific Visualization Synthesizer

R.A. Crawfis
M.J. Allison

May 1991

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available
with the understanding that it will not be cited or reproduced without the
permission of the author.

PREPRINT

This paper was prepared for submittal to the

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

A Scientific Visualization Synthesizer

Roger A. Crawfis Michael J. Allison
(crawfis@llnl.gov) (allison4@llnl.gov)

Lawrence Livermore National Laboratory
Livermore, CA 94551

Abstract or vectors at every mesh point may lead to a very
cluttered image. Continuous coloring or data mapping,
on the other hand, provide a smooth representation of the
data. The use of textures can be extended to include
vector fields and contours as well.

We describe methods for displaying scientific data using
textures and raster operations rather than geometric
techniques. The flexibility and simplicity of raster
operations allow a greater choice of visualization
techniques with only a small set of basic operations. In
addition, texture mapping techniques will be shown that
allow the representation of several variables
simultaneously, without a high degree of clutter. The
combination of traditional geometric techniques, image
composition techniques and image rendering techniques can
be integrated into a single framework for the display of
scientific data. This paper presents a system for generating
and operating on textures and images for the purposes of
scientific visualization. The advantages of using such a
system are demonstrated through the use of examples. In
particular, the development of bump maps for vector filters
and contour lines is demonstrated.

This has motivated the development of an
experimental system and language for the interactive
creation of textures and raster images. The language
facilitates the manipulation of images and textures by
allowing the user to deal with them as individual objects.
An interactive interpreter for this language has also been
developed to allow interactive experimentation of various
texture mapping schemes.

We will first describe the Texl language and
interpreter. Then we will discuss how one can map
discrete scientific data to various textures or maps that
can be combined in the rendering process. This will be
done through the extensive use of examples. We will
restrict the majority of our attention to two dimensional
surfaces with full three-dimensional renderings, and
briefly show how these techniques can be extended into
three dimensions.

Introduction

There has been significant press over the past several
years on the benefits of working with several individual
images and combining these to produce realistic images
[Porter 84], [Cook 84], [Hanrahan 90a], [Haeberli 90].
These same arguments can be applied to the field of
scientific visualization, where instead of compositing
several images of rendered objects together, we wish to
composite several graphs, images or plots. The
principles are the same; we wish to overlay a mesh or
several contour curves on top of an existing graph. This
overlaying can be accomplished by plotting the various
components in a specified order. However, by blending
the raster representations of these graphs together, images
can be improved to highlight the most pertinent
information and provide more subtle cues for less
important information.

The Texl Texture Synthesis System

In dealing with texture maps and the data with which
to derive texture maps we determined that a flexible
manipulation system was required. Some of the goals we
desired include programmability and extensibility. While
a standard programing language provides all of the
flexibility one might need, the edit, compile, and link
cycle was too long.

Other systems, used for similar work, provide the
flexibility within a hybrid interpreted and compiled
environment. The "Image Synthesizer" [Perlin 85] creates
an environment that allows complete programmability
over the color of individual pixels. The synthesizer also
introduced the concept of solid or 3D textures. The
concept of a generalized shading language to be used by
rendering systems was introduced by [Upstill 89] and
[Hanrahan 90b]. By extracting features from the previous
systems, we were able to construct a system to be used
for synthesizing textures.

Recent research in volume rendering has demonstrated
the potential for direct rendering of information. This
allows large data sets to be rendered without mapping the
data to a large set of geometric objects. With the size of
data sets rapidly growing, problem definitions are quickly
being defined on grids of resolution approaching that of
typical graphics workstations. Drawing lines, polygons

Our system, the Texl language, was designed to be
similar to C for control structures. Data types are fixed
and geared towards pixels, vectors, and texture maps.
Since some applications may require arrays, the texture
maps are allowed to be variable in size and depth to allow
them to be used as numeric arrays. All numeric
operations are the same as the C language. A summary of
data types and operations used in the system follows.

An example of a useful external routine is the
"stamp" operation. By creating a small (10-30 pixels
square) texture, it can be used to indicate aggregate
behavior in a data raster. By stamping the small texture, a
field of these icons are produced which will provide
information on the whole data set. Various parameters of
the icon may be controlled such as: size, rotation, or the
amount of transparency. Since the icon is another texture,
it may be created with Texl, or imported as with any
other image or data set.Texl Data Types and Operations

The system allows the user to load various Texl code
files, and select and execute desired functions. Return
variables from functions (usually texture rasters) can be
stored in global variables. The user may then write the
textures to disk or display them on the workstation
screen. Rasters may be read in to be used as parameters to
a Texl function.

Color +, -, *, /, =, composition
operators

Point, Vector +, -, *, /, =
Number Normal numeric ops,

C math library
Surface, Volume +, -, *, /, composition

operators, C math library

Multivariate RepresentationsHigher level constructs, such as colors or vectors, are
allowed in expressions. A user may add colors via the
plus ("+") operator, or combine them using other
operators. In some cases scalar and vector quantities are
allowed to be mixed. A user may scale a color, or vector,
using the following expression:

scalar * [1, 0, 1]
For maximum flexibility, types of similar
representations may be mixed. For instance, an
expression may add a point to a vector yielding a vector.
All data types in the system are considered to be first
class objects. This allows the programmer to create
variables of any named type and assign values of
expressions to the variables. As in C, assignment is an
operator which produces a side effect. The assignment
operator may be used within expressions, such as control
expressions in "for" or "while" loops.

Color shaded contour plots have become commonplace
for scientific environments. With color workstations
now readily available and affordable, the use of color for
scientific visualization needs to be expanded. Simple
raster operations provide a fast and flexible way of
combining traditional techniques into a single image.

Simple Plot

We will start by showing a sample of typical
geometric based techniques: a color shaded or data mapped
image, a mesh plot or grid, several isocontour lines and a
vector plot. Figure 1 illustrates an image generated using
simple raster operations to accomplish these tasks. Note
that the grid is obstructed by the vector plot in this image
and is somewhat difficult to see. This image wasAll colors are specified to contain 4 components: red,

green, blue, and alpha. The alpha component specifies the
opacity of the indicated pixel. Alpha channels were
introduced by [Porter 84] for the purposes of compositing
digital images. Compositing operators are provided for
individual pixels or complete images. In addition to
allowing textures to contain colors, they may also

contain a set of vectors, v ∈ ℜn. We have used them to
contain multiple scalar values of data, which are later
transformed via some function to a texture. Scientific or
engineering data are imported to the system and appear in
a texture variable.

Figure 1. A sample raster image.

For better efficiency and quicker running speed, an
external routine option is implemented. Often used or
complex routines can be compiled into the system and are
callable as if they are Texl routines. This allows such
routines to perform at high rates of efficiency. External
routines have been implemented to allow use of the
standard Unix™ math library. We have also implemented
other routines that can benefit from being compiled in C
such as three dimensional noise and texturing routines,
operations on entire surfaces, and filtering. Due to the
similarity of Texl and C, conversion to an external
module is usually very easy.

//***

// Vector_Plot -- Stamp a vector into a surface at the specified points
// and oriented according to the vector field.
//***

number vector_plot(surface vectors, surface points,

surface stamp, surface out_surf)
{

number xs = map_x_size(points);
number ys = map_y_size(points);
number x, y;
number angle;
number pi = 3.1415;
number vx, vy;
number width = 0.1; // The vectors are of a fixed size
number height = 0.1; // occupying 1/10 of the screen image space.
number MAX_OP = 2; // Stamp the vectors in using the MAX op.
number n_vec = 0;

for(y = 0; y < ys; y++)
 for(x = 0; x < xs; x++)
 if(getcmp(points[y,x], 0) > 0.0) // Controls where to place
 { // the vectors.

//***
 // Determine the vector orientation.

//***
 vx = getcmp(vectors[y,x], 0);
 vy = getcmp(vectors[y,x], 1);
 if(vx == 0.0)
 if (vy > 0.0)
 angle = 90.0;
 else
 angle = -90.0;
 else
 {
 angle = 180.0 / pi * atan(vy / vx);
 if(vx < 0.0)
 angle = angle + 180.0;
 }

 n_vec++;

//***
 // Stamp in the vector.

//***
 stamp_surf(stamp, x/(xs-1), y/(ys-1), width, height,
 angle, 1.0, MAX_OP, out_surf);
 }
print(n_vec; "vectors were plotted\n");

}

Figure 2 . Texl code for the vector plotter .

level for the mesh lines, and a standard hot-to-cold color
table, consisting of fully saturated colors, the result of
applying this compositing operator is to decrease the
saturation of the image at the mesh lines.

A contour plot of another data set can be added to the
image by using the contour_surf routine. This routine
will determine the contour curve for the given value and
draw the curve in the specified color. A simple
thresholding algorithm was used here.

A vector plot is then added to the image using the
vector_plot routine. This routine takes as input a vector
field (vec_data), a description of where to place the
vectors (points), and a description of the vector to plot
(vector), and produces as output an image with the
vectors composited into it. The Texl code for this
routine is shown in Figure 2. The calling syntax for this
routine is very simple, yet very powerful. By allowing
an image to be passed to the vector plot routine that
specifies for each pixel whether a vector should be drawn,
an arbitrary placement of vectors can be made. Three
point generating routines are provided for this purpose: a
regular grid distribution, a uniform random distribution,
and a weighted random distribution that takes another data
image as input for the weighting. The vector argument
passed into vector_plot is also very flexible, since it
specifies an arbitrary image. This allows any image to
be used as a vector. In particular, vectors with varying
color distributions can be used. The stamp_surf routine
shown in Figure 2 is used to map the texture surface onto
the vector plot surface. The vector used in Figure 1 was
constructed by taking the union of an ellipse with a cone
into a 32 by 32 pixel image. The height of this surface
controlled the intensity.

generated by the following simple Texl code:
data = normalize(data);
contour = data_map1(data, color_map); To show the generality of this vector plotting routine,

we create the image shown in Figure 3 by reading in an
image of our LLL logo and using it as the vector in our
vector_plot routine. The output of this routine was then

mesh = regular_grid(nx, ny, width, color);
image = max_surf(contour, mesh);
for(i=0; i < n_contr; i++)

contour_surf(data2, cont_val[i], cont_color[i], image);

vector = vector_stamp(vector_color);

Figure 3. LLL logo used as a vector.

points = grid_pts(nx, ny);
vector_plot(vec_data, points, vector, image2);
image = max(image, image2);

Note that the incoming data is sampled into a surface
or image. In this particular case, both data and data2 are
surfaces with only one channel of information (as
opposed to image which has four channels for red, green,
blue and opacity). The surface data is also normalized to
lie between zero and one. This allows us to keep our
other surface operations simple, but is not required. The
data is mapped to a color image using the routine
data_map1, which simply applies a color lookup on the
data. Note that a color map is simply a 1 by N surface
with four channels of information. A specialized routine
regular_grid is called to generate a regular grid consisting
of nx gridlines in the x domain and ny gridlines in the y
domain. The width and color of the gridlines can be
specified. The mesh generated for this image consisted of
grey gridlines on a clear background. This image is then
composited with the data mapped image using a
maximum compositing operator. By choosing a grey

used as a mask over the data mapped image.

Figure 5. Vorticity, density and velocity fields
produced by a shock wave of 2.78 density jump
passing through a turbulent field of 0.07%. (Data
courtesy of Doug Rotman, LLNL).

Figure 1 portrays large quantity of data, but is too
cluttered to adequately convey all of the information. The
next example will convey the same information using
techniques developed to reduce the overall clutter.

Using Bump Maps to Reduce the Clutter

Since the output of all of our routines are images, we
can use those images as height fields of a bump map. In
particular, we wish to extract one color component of the
images and use that as the height field of a bump map.
In Figure 4 we have placed the vector field and the
contour curves into a bump map:

data = normalize(data);
data2 = normalize(data2);

contour = data_map1(data, color_map);
mesh = regular_grid(nx, ny, width, color);
contour = max_surf(contour, mesh);

vector = vector_stamp(vector_color);
points = random_pts(n);
vector_plot(vec_data, points, vector, bump_map);

contour bumps.cont_bumps = data_map1(data2, ridge_map);
bump_map = max_surf(bump_map, cont_bumps);

Comparing Figure 4 with Figure 1, the cluttering of
the image is substantially reduced, and the color data
mapping can be easily followed. The choice of which
data parameters should be mapped to which
representations depends on the degree to which the
parameter should be highlighted. Very subtle
representations of less important features can be imbedded
into the image, where the representation does not disrupt
the portrayal of other data, but can be discernable none
the less. The mesh plot is more discernable in Figure 4,
while the vector field and contour lines are still
noticeable, but not quite as apparent. At the same time,
the data mapped image is plainly visible.

spec_map = color_surf([0.2, 0.2, 0.2, 0.2]);
image = shade(contour, bump_map, spec_map, light_source

);

The vector field used here is essentially the same as
that of Figure 1 only a random distribution of the vectors
is used rather than a uniform grid of vectors. Since the
vector we used in Figure 1 was a smooth surface, it fit
well into a bump map representation of the vector field.
The contour bumps can be generated using a simple color
table mapping where the table is constructed using a sine
wave, generating a cycle of ridges. This contour
technique has the effect of producing thicker lines or
ridges where the data changes less rapidly, hence the
gradient of the surface can be seen in the thickness of the A Vector Filter

The vector techniques employed above work well for
most problems, but can be expensive for large numbers
of vectors. For large data sets, or for rapidly changing
vector fields, the use of a one pass filter to deposit a
vector representation can be both more efficient and more
effective. Our first pass at producing a vector filter was
to construct a kernel to find the average direction, and
then set each pixel in that kernel to the value of a four-
dimensional function, f(x,y,vx,vy), where x and y are the
pixel locations and vx and vy specify the vector field at
that point. Figure 5 was generated by applying this
kernel to the velocity field of a simulation of the
interaction of a shock wave and turbulent flow field
[Rotman 91]. The distribution function in this case
calculated the height of a cylinder drawn in the direction
of the average velocity. This height was then scaled by
the magnitude of the vector. The Texl code for this filter
is shown in Figure 6. Vector kernels that generate a
more anisotropic reflection pattern are planned for future
development.

Figure 4. Vector plots and contour plots using a
bump map.

The image in Figure 5 also shows the density and
vorticity. Since both of these quantities had very
dynamic ranges with only a few values in the range, a
histogram equalization procedure was applied to the data
image before applying the data mapping. These two
images were then merged by showing only the right half
of the density and the left half of the vorticity. A border
was placed around the image and the color texture map
and the vector bump texture map were passed to the
shader. An animated sequence of this data set has been
generated using these techniques.

Figure 7. Representing scalar fields us ing
random bumps and colored noise.

Alternate representations

//
// Pass a filter over the surface that deposits a cylindrical
// brush in the direction of the vector field.
//
number vec_filt(
 surface vectors, // The data surface containing the vectors.
 number size, // The size of the vector kernel in pixels.
 number rad, // The radius of the cylinder in pixels.
 color a_color, // The overall color of the cylinder.
 surface out_surf // The resulting surface.
)
{
 number xs = map_x_size(vectors);
 number ys = map_y_size(vectors);
 number ix, iy;
 number x, y;
 number temp;
 number length;
 number vx, vy;
 number x1, x2, y1, y2, s2;
 number min_length = 0.01; // Minimum vector length that is plotted.

 x1 = (size + (xs % size)) / 2.0;
 x2 = xs - size/2.0;
 y1 = (size + (ys % size)) / 2.0;
 y2 = ys - size/2.0;
 s2 = floor((size-1)/2.0);

//**
 // Loop over the image, in strides of the kernel size.

//**
 for(iy = y1; iy < y2; (iy=iy+size))
 if((iy >= 0) && (iy < ys))
 for(ix = x1; ix < x2; (ix=ix+size))
 {

//**
 // Determine the vector and calculate its length.

//**
 vx = getcmp(vectors[iy,ix], 0);
 vy = getcmp(vectors[iy,ix], 1);
 length = sqrt(vx*vx + vy*vy);

//**
 // If the vector's magnitude is greater than some
 // tolerance, apply the kernel to this subarea.

//**
*
 if (length > min_length)
 {
 vx = vx / length;
 vy = vy / length;
 for(y = (iy-s2); y <= (iy+s2); y++)
 for(x = (ix-s2); x <= (ix+s2); x++)
 {

//***
 // Calculate the distance the pixel is from the line
 // segment drawn in the direction of the vector
 // passing through the center pixel of the kernel.

//***
 temp = vy * (x-ix) - vx * (y-iy);
 temp = (rad*rad) - (temp*temp);
 //**
 // If the pixel lies within the cylinder, color it.
 //**
 if (temp > 0.0)
 {
 temp = sqrt(temp) / rad;
 out_surf[y, x] = length * temp * a_color;
 }
 }
 }
 }
}

Figure 6 . Texl code for the vector f i l ter kernel .

By using a stochastic noise function as described by
[Perlin 85], one or more scalar functions can be
represented based on different controls and uses of the
noise. The most effective means for accomplishing this
is to control the frequency of the noise function. Figure
7 illustrates three scalar functions. The most obvious
function is the sin(x)sin(y) function represented by the
blue to violet shade map. The function:

F(x,y) = a - x2 - y2

is represented by an increasing distribution of random
bumps as we approach the lower right-hand corner. A
third function:

F(x,y) = sin(x)sin(y) y < 1/4
sin(x+t)sin(y+t) y > 1/4

is barely noticeable as a snow storm of noise where
F(x,y) exceeds some threshold. While this last technique
is not very noticeable with the shading and bump
mapping, in an animated sequence, a very noticeable
flickering will occur. While this is undesired in high
quality animation, the amount of noise or flickering can
be used to convey information, while at the same time,
the natural filters of the eye/mind can ignore it.

Conclusions

We have shown the simplicity and effectiveness of
using raster operations and texture mappings for the
display of scientific information. Using textures to
portray information allows the representation of several
variables within a single image. However, the simple
representations shown here are only the first steps to a
more general and powerful representation of data sets.
The research on glyphs could easily be incorporated into
textures used in the rendering pipeline. Time varying
textures such as the flickering of metallic paint and the
boiling of water can also be used. The end goal will be
to utilize the pattern recognition capabilities of the
human mind, and to merge the disciplines of scientific
visualization, image synthesis and image processing.

Figure 8. Textures generated in Figure 4 applied to a
surface.

National Laboratory under contract No. W-7405-Eng-48.
We would like to thank Gene Cronshagen for generating
Figure 5 and developing the histogram equalization
techniques, and Doug Rotman for graciously providing
the data for Figure 5. We would also like to thank Becky
Springmeyer, Mark Wagner and Nelson Max for
proofreading and useful comments.

References

[Cook 84] Cook, Robert L., Shade Trees,
Computer Graphics, Vol. 18 No.3
1984 (SIGGRAPH 1984) pp. 223-
231.

[Haeberli 90] Haberli, Paul, Paint By Numbers:
Abstract Image Representations,
Computer Graphics, Vol. 24 No. 4
1990 (SIGGRAPH 1990) pp. 207–
214.Finally, it must be remembered that the resulting

representations of any of these techniques are images and
hence can be used as texture maps (either color decals,
bump maps, specularity maps or displacement maps).
Mapping these textures onto surfaces such as surface
plots are trivial (since there is a one to one
correspondence between the surface domain and the
texture domain). For textures generated in
longitude/latitude space, these representation can again be
easily mapped onto a sphere. This allows the flexible
vector plots and isocontours to be applied to surfaces
without having to rewrite new complex routines that
specifically handle a vector plot on a surface, or produce a
stack of plots in three-space, etc. Figure 8 is one such
example, showing the image in Figure 4 mapped onto a
surface plot instead of a flat plane.

[Hanrahan 90a] Hanrahan, Pat and Paul Haberli, Direct
WYSIWYG Painting and Texturing on
3D Shapes, Computer Graphics,
Vol. 24 No. 4 1990 (SIGGRAPH
1990) pp. 215–223.

[Hanrahan 90b] Hanrahan, Pat and Jim Lawson, A
Language for Shading and Lighting
Calculations, Computer Graphics,
Vol. 24 No. 4 1990 (SIGGRAPH
1990) pp. 289–298.

[Perlin 85] Perlin, Ken, An Image Synthesizer,
Computer Graphics, Vol. 19 No. 3
1985 (SIGGRAPH 1985) pp. 287–
296.Future Work

The research presented here is just the beginning of an
extended program to examine the use of textures in both
2D and 3D. Our original intentions are to examine the
use of textures in both 2D and 3D. Most of the
techniques here can be quite easily extended for three-
dimensional data sets, since the textures are generated
procedurally. The use of anisotropic lighting models
offers another avenue of research. Many of the techniques
listed above need to be explored and tested on real
scientific problems. For problems in which several
variables must be understood at once, glyph-like textures
may be explored.

[Porter 84] Porter, Thomas and Tom Duff,
Compositing Digital Images,
Computer Graphics, Vol. 18 No. 3
1984 (SIGGRAPH 1984) pp. 253–
259.

[Rotman 91] Rotman, Douglas, Shock Wave Effects
on a Turbulent Flow, Physics of
Fluids, A, Vol. 3 No. 7 1991 (July),
pp. 1792–1806.

[Upstill 89] Upstill, Steve, The RenderMan
Companion, Addison Wesley,
Reading, Ma (1989).

Future work on the Texl system includes the ability to
compile a Texl function to C with incremental
compilation and dynamic loading. Optimization of the
intermediate code representation (used by the interpreter)
are also desired.

Acknowledgements

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore

